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Tissue-Specific Regulation of Leptin Expression
and Secretion by All-Trans Retinoic Acid
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Abstract In addition to hormones and the sympathetic nervous system, specific nutrients may regulate leptin
mRNA expression and adipose tissue metabolism. However, little is known regarding the effect of nutrients on leptin
mRNA expression. Retinoic acid (RA) is a ligand of some nuclear receptors and previous reports have demonstrated
contradictive effects on plasma leptin levels. Thus, we examined the effect of RA on expression of leptin in adipocytes
of murine and human origin. After 48 h incubation of murine 3T3-L1 adipocytes with 1 and 10 mM all-trans RA, the
expression of leptin mRNA was reduced by 56% and 65%, respectively, whereas the secretion of leptin was reduced by
38% and 77%, respectively. In human adipose tissue explants, 1 mMall-trans RA reduced leptin mRNA expression levels
by 55% and leptin secretion by 25% after 24 h incubation. We observed an increased mRNA expression level of the
transcription factors peroxisomal proliferator activated receptor g (PPARg), retinoidX receptora (RXRa), andRA receptora
(RARa) in 3T3-L1 cells, whereas the mRNA level of these transcription factors was unchanged in human adipose tissue
explants after incubation with RA. In two other leptin-expressing cell systems, the human placental throphoblast cell line
BeWo and normal human primary osteoblasts, there was no effect of RA on leptin mRNA expression, but leptin secretion
was reduced by 64% after 24 h incubation with 10 mM all-trans RA in BeWo cells. In conclusion, all-trans RA reduced
both expression and secretion of leptin in human and rodent adipose tissue. In human BeWo cells or primary osteoblasts,
leptin mRNA expression levels was not changed by all-trans RA, indicating a tissue-specific regulation of leptin mRNA
expression by all-trans RA. J. Cell. Biochem. 92: 307–315, 2004. � 2004 Wiley-Liss, Inc.
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Leptin is a peptide hormone mainly secreted
from adipose tissue with an important function
in regulation of the amount of body fat [Zhang
et al., 1994]. Plasma leptin concentration is
proportional to body fat mass [Considine et al.,
1996], and synthesis and secretion of leptin by
adipocytes is under complex regulation. In
addition to adipocytes, other tissues and cells,
such as placenta [Masuzaki et al., 1997], osteo-
blasts [Reseland et al., 2001c], muscle [Wang

et al., 1998], breast epithelium [Smith-Kirwin
et al., 1998], and stomach [Mix et al., 2000]
produce leptin. Except for inhibiting food intake
and activating thermogenesis via the central
nervous system [Havel, 2000; Schwartz et al.,
2000], an important function of circulating
leptin is probably to protect tissues from over-
load of triacylglycerol by stimulation of fatty
acid oxidation [Wanget al., 1999]. Furthermore,
leptin may be a growth hormone stimulating
proliferation of several cell types, such as hema-
topoietic cells [Gainsford et al., 1996], endothe-
lial cells [Sierra-Honigmann et al., 1998], and
osteoblasts [Reseland et al., 2001c; Gordeladze
et al., 2002]. In addition, leptin secreted by the
placenta may function as a fetal growth factor
during pregnancy [Hassink et al., 1997].

Fasting and refeeding, as well as insulin and
glucocorticoids, markedly influence leptin pro-
duction [Saladin et al., 1995; Kolaczynski et al.,
1996]. In a previous study, it was shown that
polyunsaturated fatty acids may regulate the
production and secretion of leptin in vivo aswell
as in vitro [Reseland et al., 2001a,b]. All-trans
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retinoic acid (RA) is an active metabolite of
vitamin A, and may increase uncoupling-
protein 1 (UCP1) gene expression in brown
adipose tissue and decrease leptin expression in
white adipose tissue in rats [Kumar and
Scarpace, 1998]. Reduction of leptin secretion
by all-trans RA has also been demonstrated in
human adipose tissue in vitro [Menendez et al.,
2001] by binding to the retinoid acid receptor
(RAR) [Giguere et al., 1987; Petkovich et al.,
1987] or the retinoid X receptor (RXR) [Heyman
et al., 1992; Levin et al., 1992]. Both RAR and
RXR can heterodimerize with peroxisomal pro-
liferator activated receptor g (PPARg) [Kliewer
et al., 1992] that may repress leptin expression
[De Vos et al., 1996; Kallen and Lazar, 1996].

In the present study, we investigated the
effect of all-trans RA on leptin expression and
secretion in adipose cells of human and murine
origin. We also examined whether other leptin-
expressing cells were subject to regulation of
leptin production by all-transRA.Furthermore,
we monitored expression of PPARg, RXRa, and
RARa in adipocytes incubatedwith all-transRA
to revealmechanisms involved in the regulation
of leptin mRNA expression.

MATERIALS AND METHODS

Cells

BeWo and 3T3-L1 cell lines were purchased
from the American Type Culture Collection.
The cell lines were cultured in Ham’s F12 or
Dulbecco’s modified Eagle’s medium (DMEM)
(Sigma Chemical Co, St. Louis, MO), respecti-
vely,andsupplementedwith10%heat-inactivated
FCS (Integrob, Zaandam, The Netherlands),
2mML-glutamine, 50U/ml penicillin, and 50 mg/
ml streptomycin (BioWhittaker, Walkersville,
MD). BeWo cells were grown to 80% confluency
prior experiments. 3T3-L1 cells were grown to
confluency and differentiated essentially as de-
scribed [Benito et al., 1991]. Briefly, the cells
were incubated inDMEMadded 20%FCS, 1 mM
dexamethasone, 0.5 mM 3-isobutyl-1-methyl-
xanthin, and 2 mM insulin for 4 days. The fol-
lowing days, cells were incubated in DMEM
added 10% FCS and 200 nM insulin. All-trans
RA (Sigma Chemical Co.) was added at day 13
after differentiation start. Commercially avail-
able human osteoblasts fromNHOst cell system
(Clonetics, San Diego, CA) were grown in osteo-
blast growth media (OGM) (Clonetics) and
exposed to b-glycerophosphate and ascorbic

acid in the ambient medium according to the
manufacturer’s instructions to induce differen-
tiation. Cells were tested for the expression of
osteoblast markers and experiments were con-
ducted after a differentiation period of 2 weeks.
All-trans RA dissolved in ethanol was added
to the cells at the indicated concentrations,
with <1% ethanol final concentration in the
culturemedia. Control cells were added ethanol
only. Medium was changed daily and saved for
measurements of leptin secretion.

Cell viabilitywas confirmedboth by cell stain-
ing with propidium iodide (PI) and Hoechst
33342, as well as by measurement of release of
lactate dehydrogenase (LDH) to the medium.
Formicroscopic analysis, cell cultureswere first
incubated with PI (0.5 mg/ml) in the dark for
20 min. Thereafter, Hoechst 33342 (1 mg/ml)
was added to the same cultures and incubated
for another 20 min in the dark. After staining,
the cells were evaluated in a Leitz Ortholux II
fluorescencemicroscope(Leica,Wetzlar,Germany).
Apoptosis and necrosis were not increased
due to incubation with all-trans RA. LDH was
measured using the Cytotoxicity Detection
Kit (LDH) (Boehringer, Mannheim, Germany).
LDH activity was not more than 5% of positive
controlwith detergent in any of the cell systems,
indicating that the cell viability was satisfac-
tory after incubation with all-trans RA.

Isolation and Culture of Human
Adipose Tissue Explants

Subcutaneous adipose tissue was collected
from healthy women undergoing mammopla-
stic surgery at the ‘‘Volvat Medical Center’’ in
Oslo. Written informed consent was obtained
from the subjects. The Regional Ethics commit-
tee approved the study. The subjects were 28�
9 years of age, with a body mass index (BMI)
of 24� 3 kg/m2 with no diagnosed metabolic
diseases. Pieces of adipose tissue were prepared
under sterile conditions and used for incubation
in plastic tubes essentially as described else-
where [Ottosson et al., 1994]. Briefly, 60–80mg
adipose tissue was cut into pieces of 5–20 mg
andpreincubated for 3 days in a controlmedium
(Parker199 medium, Sigma M-9163) supple-
mented with 10 mM HEPES, 10 g/L bovine
serum albumin (BSA) (Sigma A-4503), 12.5mM
NaHCO3, 7.175 nM human insulin (Sigma I-
0259), 100 U/ml penicillin, and 100 mg/ml
streptomycin prior to addition of all-trans RA.
pH in the medium was adjusted to 7.4 daily.
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mRNA Isolation, Northern Blotting,
and Semi-Quantitative RT-PCR

Adipose tissue was lysed and mRNA was
extracted with magnetic oligo dT particles
(Genovision, Oslo, Norway) as described by
the manufacturer. Two micrograms mRNA was
analyzed by Northern blotting and hybridi-
zation [Reseland et al., 2001b]. A human probe
for leptin and PPARg was made by cloning
the RT-PCR products described [Reseland
et al., 2001b], using the TOPO TA Cloning kit
(Invitrogen Corp., Carlsbad, CA). The identity
of the probes was confirmed by sequencing. The
probe for RXRa was as described by Mangels-
dorf et al. [1992]. Hybridization signals were
monitored in a Phospho Imager (Molecular
Dynamics, Inc., Sunnyvale, CA) andnormalized
to the signals for L27 (ATCC-107385). mRNA
from cell cultures was purified using magnetic
oligo dT particles (Dynabeads, Dynal AS, Oslo,
Norway or Genovision, Oslo, Norway) as de-
scribed by the manufacturer. A sample of the
mRNAwasused in a semi-quantitativeRT-PCR
using the GeneAmp EZ rTth RNA PCR kit
(Perkin Elmer, Applied Biosystems, Foster City,
CA). Each reaction contained 2.0 mCi a32P-CTP,
22.5 pmol of each primer and 2.5mMMn(OAc)2.
Oligonucleotide sequences of sense and anti-
sense primers are presented in Table I. Line-
arity of the PCR reaction was confirmed for
each primer set and cell type prior to the
experiments.
Temperature cycles were as follows: 608C for

30 min, 948C for 1 min followed by 32 cycles of
948C for 30 s, and 608C for 1.5 min. Finally the
samples were incubated at 608C for 7 min. PCR
products were separated on 2% agarose gels.
The cDNA bands were excised from the gel and
allowed to elute for 2 h in scintillation liquid

before counting in a WinSpectral 1414 Liquid
scintillation Counter (Wallac, Turku, Finland).
Relative mRNA abundance was calculated as
the ratio between the specificmRNAandb-actin
or a-tubulin, for murine or human samples re-
spectively, and is presented as % of control
incubations.

Leptin Secretion

Medium from cell cultures was concentrated
10� using a MICROSEP microconcentrator
with exclusion limit of 3 kDa. Medium from
human adipose tissue explants was used with-
out concentration. Leptin was measured in
100 ml medium using a competitive radioimmu-
noassay (Linco Research, St. Charles, MO). The
data are presented as % of control incubations.

Statistics

Results are presented as means� standard
deviation.Student’s t-testanalysis, orwhennor-
mality test failed, Mann–Whitney Rank Sum
test, were used to determine the significance
level of differences among sample groups, with
a significance criterion of P� 0.05.

RESULTS

RA Reduced Leptin mRNA Expression Levels
and Secretion in Adipose Tissue

Leptin mRNA expression levels in mature
murine adipocytes (3T3-L1) was reduced by
56% (P¼ 0.028) after 48 h incubation with 1 mM
all-trans RA (Fig. 1A). A tenfold increase in all-
trans RA concentration (10 mM) gave similar
effects reducing the leptin mRNA expression
levels, and maintaining the reduced leptin
mRNA expression levels after 72 h incubation.
One and 10 mM all-trans RA significantly
reduced leptin secretion to the media after 24 h

TABLE I. Primer Pairs Used for Semi-Quantitative RT-PCR

Product designation Estimated size (bp) Sense and antisense primer sequences

Murine b-actin 540 50-GTGGGCCGCTCTAGGCACCAA-30

50-CTCTTTGATGTCACGCACGATTTC-30

Murine leptin 250 50-AGCAGTGCCTATCCAGAAAGT-30

50-ATTCTCCAGGTCATTGGCTAT-30

Murine PPARg 674 50-TTGAGTGCCGAGTCTGTGGGGATAA-30

50-CAGGGAGGCCAGCATCGTGTAGA-30

Murine RXRa 165 50-ATGAAGCGGGAAGCTGTG-30

50-CATGTTTGCCTCCACGTATG-30

Murine RARa 166 50-CAGTTCCGAAGAGATAGTACC-30

50-TACACCATGTTCTTCTGGATGC-30

Human leptin 197 50-GGCTTTGGCCCTATCTTTTC-30

50-GGATAAGGTCAGGATGGGGT-30

Human a-tubulin 527 50-CACCCGTCTTCAGGGCTTCTTGGTTT-30

50-CATTTCACCATCTGGTTGGCTGGCTC-30
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(Fig. 1B). The effect was significant, but more
pronounced with 10 mM all-trans RA on leptin
secretion after 48 and 72 h, as compared to 1 mM
all-transRA. Viability of the cells were confirm-
ed by measuring LDH release to the medium,
and DNA staining followed by microscopic
analysis (data not shown).

In human adipose tissue explants leptin
mRNAexpression levels (Fig. 1C)aswell as leptin
secretion to the medium (Fig. 1D) was signifi-
cantly reduced after 24 h incubation with 1 and
10 mM all-trans RA. This suggests that the
regulation of leptin mRNA expression and
secretion by all-trans RA in adipose tissue is
similar in humans and mice.

After 3 h incubation with 1 or 10 mMall-trans
RA, the mRNA expression levels of PPARg
in 3T3-L1 cells was significantly increased

(Fig. 2A). Furthermore, RXRa mRNA expres-
sion levels were significantly increased after
6 h incubation with all-trans RA (Fig. 2B). Ten
mM of all-trans RA increased RARa mRNA
expressionby 59% (P¼ 0.029) after 24h,whereas
1 mM all-trans RA had no significant effect
(Fig. 2C). In contrast, the mRNA expression
levels of PPARg (Fig. 2D) and RXRa (Fig. 2E)
were unchanged in human adipose tissue ex-
plants after incubationwith 1 or 10 mMall-trans
RA at all time points.

Leptin mRNA Expression Levels Were
Not Regulated by All-Trans RA in Human

Placental Cells and Osteoblasts

Leptin mRNA expression levels were not
altered by all-trans RA in BeWo cells (Fig. 3A),
butwe observed a significant reduction in leptin

Fig. 1. The effect of all-trans retinoic acid on leptin mRNA expression levels and secretion in 3T3-L1
adipocytes (A, B) and human adipose tissue explants (C, D). Leptin mRNA expression levels (A, C) and
secretion (B, D) are presented asmeans� SD (% of control), based on three separate experiments performed
in triplicates. LeptinmRNAexpression levels are investigated by RT-PCR (3T3-L1) orNorthern hybridization
(human adipose tissue).

310 Hollung et al.



secretionafter24hof incubationwith1and10mM
all-transRA. After 48 h, only the cells incubated
with 10 mM all-trans RA maintained a signi-
ficant reduction of leptin secretion (Fig. 3B).

Incubation of all-trans RA had no significant
effect on leptin mRNA expression levels in
primary cultures of human osteoblasts during
72 h periods (Fig. 3C).

Fig. 2. The effect of all-trans retinoic acid on the expression of PPARg, RXRa, and RARamRNA in 3T3-L1
adipocytes (A–C) or human adipose tissue explants (D, E). PPARg (A, D), RXRa (B, E), and RARa (C) mRNA
expression levels are presented as means� SD (% of control), based on three separate experiments
performed in triplicates. mRNA expression was investigated by RT-PCR (3T3-L1) or Northern hybridization
(human adipose tissue).
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DISCUSSION

In this study, we show that all-trans RA re-
duced leptin mRNA expression levels as well as
leptin secretion in adipose tissue. The reduction
is observed in human adipose tissue explants
as well as in mouse 3T3-L1 cells, suggesting a
similar effect by all-trans RA on leptin produc-
tion in the two species. Menendez et al. [2001]
also observed reduced leptin secretion from
cultured human adipose tissue incubated with
all-trans RA. Administration of retinol and RA
may also reduce circulating leptin levels and
leptin expression in rats [Kumar and Scarpace,

1998; Kumar et al., 1999] andmice [Bonet et al.,
2000].

All-trans RA is a ligand for the RAR tran-
scription factor [Giguere et al., 1987; Petkovich
et al., 1987], which can heterodimerize with
nuclear receptors suchasRXRorPPAR[Kliewer
et al., 1992]. All-trans RA may induce elevated
RXR and RAR mRNA levels in F9 teratocarci-
noma cells [Wan et al., 1994] or in retinoblas-
toma cell lines [Li et al., 2002]. Activation of
PPARg has previously been shown to inhibit
leptin expression in rats as well as in cultured
adipocytes [De Vos et al., 1996; Kallen and
Lazar, 1996]. In 3T3-L1 cells, all-trans RA pro-

Fig. 3. The effect of all-trans retinoic acid on leptin mRNA expression and secretion in BeWo cells (A, B)
and osteoblasts (NHO) (C). Leptin mRNA expression levels (A, C) were presented as means� SD (% of
control), based on three separate experiments performed in triplicate. TheNHOexperiments (C) were based
on two separate experiments performed in duplicates. LeptinmRNAexpressionwas investigated byRT-PCR.
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moted increased mRNA expression levels of
PPARg, RXRa, andRARa, indicating that leptin
mRNA expression in 3T3-L1 cells may be regu-
lated directly or indirectly via these nuclear
receptors. In contrast, the transcript levels of
PPARg and RXRawere not significantly chang-
ed at any time point in human adipose tissue
explants after all-trans RA incubation in our
experiments. In brown adipose tissue, it was
observed that RA isomers reducedPPARgmRNA
[Valmaseda et al., 1999], and expression of
PPARg as well as leptin was reduced in murine
adipose tissue by subcutaneous injection of all-
trans RA [Ribot et al., 2001]. The findings
reported so far indicate that the effect of RA on
PPARgmay be time-, dose-, tissue-, and species-
dependent.
We did not observe any effects of RA on leptin

mRNA expression in neither osteoblasts nor
placenta cells. This implies that leptin mRNA
expression probably is regulated by other me-
chanisms in these cells than adipose tissue. Our
results in BeWo cells are supported by Guibour-
denche et al. [2000] demonstrating that leptin
expression was unaltered in primary cultures
of human syncytiotrophoblasts after incubation
of 0.1 mM all-trans RA for 48–96 h. In contrast,
we found that all-trans RA caused a significant
reduction in leptin secretion to the medium
after 24 h from BeWo cells. The discrepancy be-
tween mRNA expression and secretion of leptin
in BeWo cells could be due to stability of the
product or inhibition of release of leptin from
intracellular compartments, without affecting
expression of the leptin gene. Placenta-pro-
duced leptin probably acts as a fetal growth
hormoneduringpregnancy [Hassink et al., 1997],
and production and secretion from placental
cells might be regulated differently than in
other tissues, to protect the fetus against rapid
shifts in leptin exposure.
The concentrations ofall-transRAused in our

experiments are high, but neither apoptosis nor
necrosis were increased due to this exposure in
neither of the cell systems tested. LDH activity
was<5%of positive controlwith detergent in all
cell systems, indicating that the cell viability
was satisfactory after all-trans RA incubation.
Rather high doses of all-trans RA are used

routinely for treatment of newly diagnosed
acute promyelocytic leukemia [Douer, 2000].
Moreover, RA is negatively associated with
bone density [Melhus et al., 1998; Promislow
et al., 2002] and bone resorptionmay be induced

by vitamin A in vitro [Scheven and Hamilton,
1990; Promislow et al., 2002]. We have previo-
usly shown that leptin is produced and secreted
by human osteoblasts [Reseland et al., 2001c],
that leptin stimulates osteoblast differentiation
and proliferation, and that leptin may inhibit
all-trans RA-induced apoptosis [Gordeladze
et al., 2002]. All-trans RA might inhibit bone
growth by affecting osteoblast proliferation,
differentiation, andproduction of leptin or other
secreted factors such as interleukines targeting
osteoclasts. We observed no effect of all-trans
RAonleptinmRNAexpression inprimaryosteo-
blasts, and we were unable to detect apoptosis
in our cells, although this could be due to the
relatively short incubation times.

In conclusion, all-trans RA reduced expres-
sion of leptinmRNAaswell as secretion of leptin
in human andmurine adipose tissue. In human
BeWo cells or primary osteoblasts, leptinmRNA
expression was not changed by all-trans RA,
suggesting a tissue-specific regulation of leptin
by all-trans RA.
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